Skip to main content

Data Engineer, AWS Workforce Planning

Job ID: 2817176 | Amazon.com Services LLC

DESCRIPTION

Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.

Come join the team that owns the technology behind key AWS people planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners.

As a Data Engineer on the AWS PXT Workforce Planning team, you will play a critical role in building and maintaining the data pipelines and ETL mechanisms necessary to scale and implement the workforce planning data services and backend architecture. You will work closely with partner teams to design, develop, test, and deploy scalable data solutions that enable efficient workforce planning and decision-making.

You will work closely within a small team of Engineers and Scientists to develop scalable and secure workflows in workforce planning, ML modeling, analysis and inspection. You will enable a global staff of workforce strategists and cross functional groups to perform strategic planning, scenario analysis and understand the downstream impact of workforce decisions. As a data engineer, you will strive to optimize and improve our data infrastructure to be modular, extensible, reusable, secure, scalable, and fault-tolerant.


Key job responsibilities
This position is right for you if you are passionate about solving the ambiguous data architecture challenges on behalf of our customers and users. Being deeply customer focused is a must as you constantly look for ways to improve the quality, speed, maintainability and efficiency of our organization’s data architecture. You are able to think creatively, operate best within an agile team, and are able to proactively anticipate customer needs.

This Role will:
• Actively collaborate with our product managers and software engineers to understand requirements and acceptance criteria.
• Own development and maintenance of new and existing scalable, secure, extensible, and reusable data pipelines.
• Utilize best engineering practices including but not limited to
o Robust testing (unit, data integrity, and smoke) with automated rollbacks
o Linting
o Secure by default designs
o Code reviews
• Engage in collaborative design reviews with fellow engineers consisting of peer data, software, and business intelligence.
• Collaborate with senior staff to determine data typing, table schemes, and indexing methodologies.
• Collaborate with partner data engineering teams within peer organizations for shared project initiatives.
• Consider and advise on key design and technology trade-offs related to data architecture, technology platforms, and table designs.

About the team
Our team communicates who we are as an employer – what it’s like to be an Amazonian, why we love innovating on behalf of customers and why people should join us. We build trust with our partners, dive deep into our data, and love to learn and be curious as we deliver results. Our job is to bring that to life.
Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
Why AWS
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
Mentorship and Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face.

BASIC QUALIFICATIONS

- 4+ years of data engineering experience
- Experience with data modeling, warehousing and building ETL pipelines
- Experience with AWS technologies like Redshift, S3, AWS Glue, EMR, Kinesis, FireHose, Lambda, and IAM roles and permissions
- Experience building/operating highly available, distributed systems of data extraction, ingestion, and processing of large data sets
- Experience in at least one modern scripting or programming language, such as Python, Java, Scala, or NodeJS
- Experience with big data technologies such as: Hadoop, Hive, Spark, EMR

PREFERRED QUALIFICATIONS

- Experience with non-relational databases / data stores (object storage, document or key-value stores, graph databases, column-family databases)
- Experience writing infrastructure as code using a declarative configuration language such as AWS CDK, Terraform, or Microsoft ARM templates.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visit https://www.amazon.jobs/en/disability/us.

Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $118,900/year in our lowest geographic market up to $205,600/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. This position will remain posted until filled. Applicants should apply via our internal or external career site.